1. Во время процесса, проводимого с одним молем идеального одноатомного газа, измерялись макропараметры состояния газа:

Измерение	Температура, К	Давление, кПа	Объем, л
1	290	161	15
2	310	172	15
3	3 330	183	15
4	350	194	15
5	5 370		15

Такая закономерность характерна для процесса:

- 1) адиабатного
- 2) изобарного
- 3) изотермического
- 4) изохорного
- 5) циклического
- **2.** Во время процесса, проводимого с одним молем идеального одноатомного газа, измерялись макропараметры состояния газа:

Измерение	Измерение Температура, К		Объем, л
1	1 280 93		25
2	320	106	25
3	360	120	25
4	400	133	25
5	440	146	25

Такая закономерность характерна для процесса:

- 1) адиабатного
- 2) изобарного
- 3) изохорного
- 4) изотермического
- 5) циклического
- **3.** Во время процесса, проводимого с одним молем идеального одноатомного газа, измерялись макропараметры состояния газа:

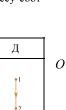
Измерение	Температура, К	Давление, кПа	Объем, л
1 330		300	9,1
2	340	300	9,4
3	350 300	300	9,7
4 360		300	10,0
5	5 370		10,2

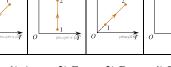
Такая закономерность характерна для процесса:

- 1) адиабатного
- 2) изобарного
- 3) изотермического
- 4) изохорного
- 5) циклического
- **4.** Во время процесса, проводимого с одним молем идеального одноатомного газа, измерялись макропараметры состояния газа:

Измерение	Температура, К	Давление, кПа	Объем, л	
1	1 280 233		10	
2	320	266	10	
3	340	283	10	
4 360		299	10	
5 380		316	10	

Такая закономерность характерна для процесса:


- 1) циклического
- 2) изохорного
- 3) адиабатного
- 4) изобарного
- 5) изотермического


5. Во время процесса, проводимого с одним молем идеального одноатомного газа, измерялись макропараметры состояния газа:

Измерение	Температура, К	Давление, кПа	Объем, л
1	280	150	15,5
2	310	150	17,2
3	340	150	18,8
4	370	150	20,5
5	400	150	22,2

Такая закономерность характерна для процесса:

- 1) изохорного 4) изобарного
- 2) адиабатного
 - 3) изотермического 5) циклического
- **6.** На графике в координатах (p, V) представлен процесс 1→2 в идеальном газе, количество вещества которого постоянно. В координатах (V, T) этому процессу соответствует график, обозначенный буквой:

- 1) A Б
- 3) B
- 4) Γ
- 5) Д
- 7. В Международной системе единиц (СИ) удельная теплота сгорания топлива измеряется в:
 - 1) $\frac{\cancel{\square} \times K}{K\Gamma \cdot K}$ 2) $\frac{\cancel{\square} \times K}{K\Gamma}$ 3) $\frac{\cancel{\square} \times K}{K}$ 4) $\cancel{\square} \times K$

- 5) K
- 8. Выберите процессы, в которых сила давления идеального газа совершает положительную работу:
 - 1) изобарное сжатие газа;
- 2) изобарное нагревание газа;
- 3) изохорное нагревание газа;
- 4) изохорное охлаждение газа;
- 5) изотермическое расширение газа.
- **9.** В некотором процессе зависимость давления p идеального газа от его объема V имеет вид $p=rac{A}{V},$ где A — коэффициент пропорциональности. Если количество вещества постоянно, то процесс является:
 - 1) адиабатным
- 2) изотермическим
- 3) изохорным
- 4) изобарным
- 5) произвольным
- 10. При изохорном нагревании идеального газа, количество вещества которого постоянно, давление газа изменилось от $p_1=130~{\rm k\Pi a}$ до $p_2=140~{\rm k\Pi a}$. Если начальная температура газа $T_1 = 325 \, \mathrm{K}$, то конечная температура T_2 газа равна:
 - 1) 330 K
- 2) 350 K
- 3) 390 K
- 4) 400 K
- 5) 420 K
- 11. Если при изохорном нагревании идеального газа, количество вещества которого постоянно, давление газа увеличилось на $\Delta p = 120$ кПа, а абсолютная температура возросла в $k=2{,}00$ раза, то давление p_2 газа в конечном состоянии равно:
 - 1) 180 κΠa
- 2) 210 κΠa 3) 240 κΠa 5) 360 κΠa
- 4) 320 κΠa
- 12. Если при изотермическом расширении идеального газа, количество вещества которого постоянно, давление газа уменьшилось на $\Delta p = 80$ к Π а, а объем газа увеличился в k = 5,00 раз, то давление p_2 газа в конечном состоянии равно:
- 2) 30 κΠa
- 3) 40 κΠa
- 4) 50 κΠa

	• •	•		чество вещества кото-
-	-		•	К до $T_2 = 420$ К. Если
начальн	ое давление газа р	$b_1 = 150 \text{ kHz}, \text{ to k}$	онечное давлени	е p_2 газа равно:
	1) 180 кПа	2) 190 кПа	3) 200 кПа	4) 210 кПа
		5) 220	кПа	
1.4	East, 2001			
				го газа, количество ве-
	-		-	на $ \Delta p = 240$ кПа, а е p_1 газа было равно:
оовем п	изи увели инлел в т	5,00 pus, 10 nu	тальное давлени	ерт таза овято равно.
	1) 300 кПа	2) 320 кПа	3) 360 кПа	4) 380 кПа

5) 400 κΠa

15. При изохорном нагревании идеального газа, количество вещества которого постоянно, температура газа изменилась от $T_1 = 300 \; \mathrm{K}$ до $T_2 = 440 \; \mathrm{K}.$ Если начальное давление газа $p_1=150~{\rm k}\Pi{\rm a},$ то конечное давление p_2 газа равно:

> 1) 180 κΠa 2) 190 κΠa 3) 200 κΠa 4) 210 κΠa 5) 220 κΠa

16. Если при изотермическом расширении идеального газа, количество вещества которого постоянно, объем газа увеличился на $|\Delta V| = 8$ л, а его давление уменьшилось в k=3,00 раз, то начальный объем V_1 газа был равен:

> 2) 3,0 л 3) 4,0 л 4) 5,0 л 1) 2,0 л 5) 6,0 л

17. При изобарном нагревании идеального газа, количество вещества которого постоянно, объем газа увеличился в k=1,50 раза. Если начальная температура газа была T_1 = 300 K, то изменение температуры Δt в этом процессе составило:

1) 27,0 K 2) 150 K 3) 300 K 4) 360 K 5) 450 K

18. При изохорном нагревании идеального газа, количество вещества которого постоянно, давление газа изменилось от $p_1=150~{\rm k\Pi a}$ до $p_2=165~{\rm k\Pi a}$. Если начальная температура газа $T_1 = 300 \; \mathrm{K},$ то конечная температура T_2 газа равна:

3) 390 K 1) 330 K 2) 350 K 4) 400 K 5) 420 K

19. При изобарном нагревании идеального газа, количество вещества которого постоянно, объем газа увеличился в k = 1,40 раза. Если температура газа возросла на Δt = 120 К,то начальная температура T_1 газа была равна:

3) 300 K 1) 27,0 K 2) 150 K 4) 360 K 5) 450 K

20. При изохорном нагревании идеального газа, количество вещества которого постоянно, давление газа изменилось от $p_1=120~{\rm k}\Pi{\rm a}$ до $p_2=160~{\rm k}\Pi{\rm a}$. Если начальная температура газа $T_1 = 300 \; \mathrm{K},$ то конечная температура T_2 газа равна:

1) 330 K 2) 350 K 3) 390 K 5) 420 K 4) 400 K

21. При изобарном охлаждении идеального газа, количество вещества которого постоянно, его объем уменьшился от $V_1 = 70$ л до $V_2 = 60$ л. Если начальная температура газа t_1 = 77 °C, то конечная температура t_2 газа равна:

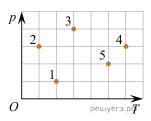
> 1) 17°C 2) 27°C 3) 37°C 4) 47°C 5) 57°C

22. При изобарном охлаждении идеального газа, количество вещества которого постоянно, его объем уменьшился от V_1 = 66 л до V_1 = 57 л. Если начальная температура газа t_1 = 57 °C, то конечная температура t_2 газа равна:

> 1) 12°C 2) 22°C 3) 32°C 4) 42°C 5) 52°C

23. Если при изобарном нагревании идеального газа, начальная температура которого $t_1 = 7.0^{\circ}$ C, его объём увеличился в k = 1.2 раза, то конечная температура t_2 газа равна:

> 1) 8,4°C 2) 14°C 3) 24°C $4) 40^{\circ} C$ 5) 63°C


24. Идеальный газ находился при температуре $t_1 = 27^{\circ}$ С. Если газ изохорно нагрели до температуры $t_2 = 57^{\circ}$ С, то его давление увеличилось в:

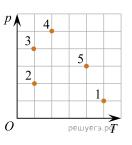
1) 2,1 pasa 2) 1,9 pasa 3) 1,6 pasa 4) 1,4 pasa 5) 1,1 pasa

25. При изобарном нагревании идеального газа, количество вещества которого постоянно, его температура увеличилась от t_1 = 27 °C до t_2 = 67 °C. Если начальный объем газа V_1 = 60 л, то конечный объем V_2 газа равен:

1) 66 л 2) 68 л 3) 70 л 4) 72 л 5) 74 л

26. На p–T -диаграмме изображены различные состояния одного моля идеального газа. Состояние, соответствующее наименьшему давлению p газа, обозначено цифрой:

1) 1 2) 2 3) 3 4) 4 5) 5

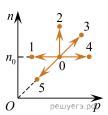

27. При изобарном охлаждении идеального газа, количество вещества которого постоянно, его объём уменьшился от $V_1=80$ л до $V_2=64$ л. Если начальная температура газа $t_1=97$ °C, то конечная температура t_2 газа равна:

1) 13 °C 2) 23 °C 3) 33 °C 4) 43 °C 5) 53 °C

28. При изобарном охлаждении идеального газа, количество вещества которого постоянно, его объём уменьшился от $V_1=68$ л до $V_2=56$ л. Если начальная температура газа $t_1=67$ °C, то конечная температура t_2 газа равна:

1) 7 °C 2) 9 °C 3) 17 °C 4) 23 °C 5) 37 °C

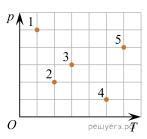
29. На p-T -диаграмме изображены различные состояния одного моля идеального газа. Состояние, соответствующее наибольшему давлению p газа, обозначено цифрой:

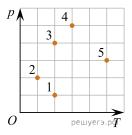


1) 1 2) 2 3) 3 4) 4 5) 5

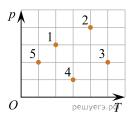
30. В результате изотермического процесса объем идеального газа увеличился от $V_1=5,0$ л до $V_2=6,0$ л. Если начальное давление газа $p_1=0,18$ МПа, то конечное давление p_2 газа равно:

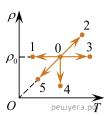
1) 0,11 МПа 2) 0,13 МПа 3) 0,15 МПа 4) 0,16 МПа 5) 0,22 МПа

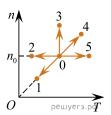

31. На рисунке изображена зависимость концентрации n молекул от давления p для пяти процессов с идеальным газом, количество вещества которого постоянно. Изохорное нагревание газа происходит в процессе:


1) 0-1 2) 0-2 3) 0-3 4) 0-4 5) 0-5

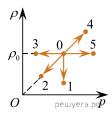
32. При изотермическом сжатии давление идеального газа изменилось от p_1 = 0,15 МПа до p_2 = 0,18 МПа. Если конечный объем газа V_2 = 5,0 л, то начальный объем V_1 газа равен:


- 1) 6,0 л 2) 6,2 л 3) 7,0 л 4) 7,5 л 5) 8,2 л
- **33.** На p-T диаграмме изображены различные состояния одного моля идеального газа. Состояние, соответствующее наименьшему давлению p газа, обозначено цифрой:


- 1) 1 2) 2 3) 3 4) 4 5) 5
- **34.** Идеальный газ объемом $V_1 = 5,0$ л находился при температуре $t_1 = 27^{\rm o}$ C. Если при изобарном нагревании температура газа увеличилась до $t_2 = 87^{\rm o}$ C, то объем V_2 газа в конечном состоянии равен:
 - 1) 4,2 л
- 2) 6,0 л
 - 3) 6,5 л
- 4) 7,0 л
- 5) 7,6 л
- **35.** На p-T диаграмме изображены различные состояния одного моля идеального газа. Состояние, соответствующее наименьшей температуре T газа, обозначено цифрой:


- 1) 1 2) 2 3) 3 4) 4 5) 5
- **36.** На p T -диаграмме изображены различные состояния одного моля идеального газа. Состояние, соответствующее наименьшей температуре T газа, обозначено цифрой:

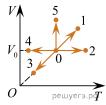
- 1) 1 2) 2 3) 3 4) 4 5) 5
- **37.** На рисунке изображена зависимость плотности ρ молекул от температуры T для пяти процессов с идеальным газом, масса которого постоянна. Давление газа p изохорно уменьшалось в процессе:



- 1) 0-1 2) 0-2
- 3)0-3
- 4) 0 4
- 5)0-5
- **38.** На рисунке изображена зависимость концентрации n молекул от температуры T для пяти процессов с идеальным газом, количество вещества которого постоянно. Давление газа p изохорно увеличивалось в процессе:

- 1) 0-1 2) 0-2
- 3)0-3
- 4)0-4
- 5)0-5

39. На рисунке изображена зависимость плотности ρ от давления p для пяти процессов с идеальным газом, масса которого постоянна. Изохорное охлаждение газа происходит в процессе:



$$1)0-1$$

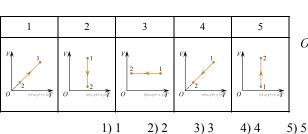
$$2)0-2$$

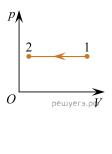
$$5)0-5$$

40. На V—Т диаграмме изображены пять процессов с идеальным газом, масса которого постоянна. При постоянной плотности ρ давление газа p увеличивалось в процессе:

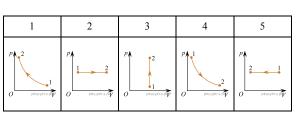
$$1)0-1$$

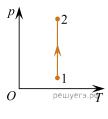
$$2)0-2$$

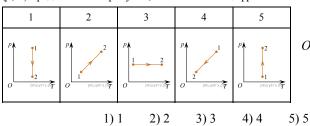

$$3) 0 - 3$$

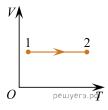

$$4)0-4$$

$$5)0-5$$


- **41.** С идеальным газом, количество вещества которого постоянно, проводят изобарный процесс. Если объём газа увеличивается, то:
 - 1) к газу подводят теплоту, температура газа увеличивается
 - 2) теплота не подводится к газу и не отводится от него, температура газа уменьшается
 - 3) теплота не подводится к газу и не отводится от него, температура газа постоянна
 - 4) теплота не подводится к газу и не отводится от него, температура газа увеличивается
 - 5) от газа отводят теплоту, температура газа уменьшается
- **42.** С идеальным газом, количество вещества которого постоянно, проводят изохорный процесс. Если давление газа увеличивается, то:
 - 1) к газу подводят теплоту, температура газа увеличивается
 - 2) теплота не подводится к газу и не отводится от него, температура газа уменьшается
 - 3) теплота не подводится к газу и не отводится от него, температура газа постоянна
 - 4) теплота не подводится к газу и не отводится от него, температура газа увеличивается
 - 5) от газа отводят теплоту, температура газа уменьшается
- **43.** С идеальным газом, количество вещества которого постоянно, проводят изотермический процесс. Если объём газа увеличивается, то:
 - 1) к газу подводят теплоту, давление газа увеличивается
 - 2) к газу подводят теплоту, давление газа уменьшается
 - 3) теплота не подводится к газу и не отводится от него, давление газа увеличивается
 - 4) теплота не подводится к газу и не отводится от него, давление газа уменьшается
 - 5) теплота отводится от газа, давление газа уменьшается

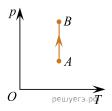

44. На рисунке представлен график зависимости давления идеального газа определенной массы от объема. График этого процесса в координатах (V, T) представлен на рисунке, обозначенном цифрой:


45. На рисунке представлен график зависимости давления идеального газа определенной массы от абсолютной температуры. График этого процесса в координатах (p, V) представлен на рисунке, обозначенном цифрой:



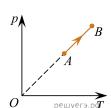
1) 1 2) 2 3) 3 4) 4 5) 5

46. На рисунке представлен график зависимости объема идеального газа определенной массы от абсолютной температуры. График этого процесса в координатах (p,T) представлен на рисунке, обозначенном цифрой:


47. Если давление p_0 насыщенного водяного пара при некоторой температуре больше парциального давления p водяного пара в воздухе при этой же температуре в n=1,2 раза, то относительная влажность ϕ воздуха равна:

- 1) 35 %
- 2) 46 %
- 3) 59 %
- 4) 66 %
- 5) 83 %

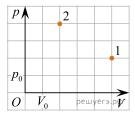
48. Сосуд, плотно закрытый подвижным поршнем, заполнен воздухом с относительной влажностью $\phi_1=30\%$. Если при изотермическом сжатии объём воздуха в сосуде уменьшится в три раза, то относительная влажность ϕ_2 воздуха будет равна:


- 1) 100%
- 2) 90%
- 3) 30%
- 4) 15%
- 5) 10%

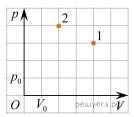
49. С идеальным газом, количество вещества которого постоянно, провели процесс АВ, показанный в координатах (p, T). Этот же процесс в координатах (T, V) изображён на графике, обозначенном цифрой:

1	2	3	4	5
O peunyers p.V	T ↑ B B A A O peuwers.pV	B A O peunyers pW	A B O peunyers, p.W	T A A B B B Petryers, p₩
	1) 1;	2) 2;	3) 3;	4) 4;

- 1) 1;
- 2) 2;
- 3) 3;
- 5) 5.
- 50. С идеальным газом, количество вещества которого постоянно, провели процесс АВ, показанный в координатах (p, T). Этот же процесс в координатах (p, V) изображён на графике, обозначенном цифрой:



	1	2	3	4	5
6	B A peunyera.pW	P B A P P P P P P P P P P P P P P P P P	A B pewyers.pW	O pewyers, p.W	P B A A P P P P P P P P P P P P P P P P


- 1) 1;
- 2) 2;
- 3) 3;
- 5) 5.

4) 4;

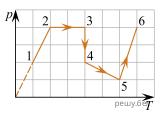
51. Идеальный газ, количество вещества которого постоянно, перевели из состояния 1 в состояние 2 (см. рис.). Если в состоянии 1 температура газа $T_1 \; = \; 400 \; {
m K}, \; {
m то} \; {
m B} \; {
m cостоянии} \; 2 \; {
m температура} \; {
m газа} \; T_2$ равна:

- 1) 1000 K
- 2) 800 K
- 3) 500 K
- 4) 320 K
- 5) 200 K
- 52. Идеальный газ, количество вещества которого постоянно, перевели из состояния 1 в состояние 2 (см. рис.). Если в состоянии 1 температура газа T_1 = 480 K, то в состоянии 2 температура газа T_2 равна:

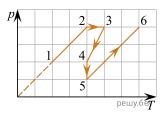
- 1) 320 K
- 2) 360 K
- 3) 640 K
- 4) 720 K
- 5) 960 K
- **53.** По трубе, площадь поперечного сечения которой S = 5.0 см², со средней скоростью $\langle \upsilon \rangle$ = 8,0 м/с перекачивают идеальный газ (M = 58 \cdot 10⁻³ кг/моль), находящийся под давлением p = 390 кПа при температуре T = 284 К. За промежуток времени $\Delta t = 10$ мин через поперечное сечение трубы проходит масса газа, равная ... КГ.
- 54. Если идеальный газ, количество вещества которого постоянно, изохорно охладили от температуры $t_1 = 117~{}^{\circ}{\rm C}$ до температуры $t_2 = 39~{}^{\circ}{\rm C}$, то модуль относительного изменения давления газа $\left| \frac{\Delta p}{p_1} \right|$ равен... %.

55. Велосипедную камеру, из которой был удалён весь воздух, накачивают с помощью насоса. При каждом ходе поршня насос захватывает из атмосферы воздух объёмом $V_0=4,8\cdot 10^{-5}~{\mbox{m}}^3.$ Чтобы объём воздуха в камере стал равным $V_1 = 2, 4 \cdot 10^{-3} \,\, \mathrm{m}^3$, его давление достигло значения $p_1 = 1, 6 \cdot 10^5 \,\, \mathrm{\Pi a}$, поршень должен сделать число N ходов, равное \dots

Примечание. Атмосферное давление $p_0 = 1, 0 \cdot 10^5 \text{ }\Pi\text{a}$, изменением температуры воздуха при накачивании камеры пренебречь.

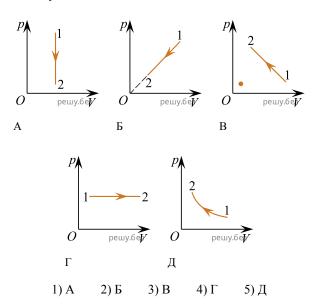

56. Велосипедную камеру, из которой был удалён весь воздух, накачивают с помощью насоса. При каждом ходе поршня насос захватывает из атмосферы воздух объёмом $V_0=4,7\cdot 10^{-5}~{\rm M}^3.$ Чтобы объём воздуха в камере стал равным $V_1=2,2\cdot 10^{-3}~{\rm M}^3,$ его давление достигло значения $p_1=1,54\cdot 10^5~{\rm Ha},$ поршень должен сделать число N ходов, равное

Примечание. Атмосферное давление $p_0 = 1, 0 \cdot 10^5 \text{ }\Pi\text{a}$, изменением температуры воздуха при накачивании камеры пренебречь.

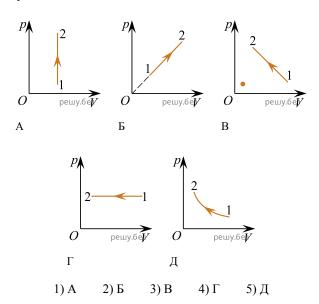

57. Значения плотности $\rho_{\rm H}$ насыщенного водяного пара при различных температурах t представлены в таблице. Если в одном кубическом метре комнатного воздуха при температуре $t_0 = 24$ °C содержится m = 12 г водяного пара, то чему равна относительная влажность ф воздуха в комнате? Ответ приведите в процен-

t, °C	21	22	23	24	25
$\rho_{\rm H}, r/{\rm M}^3$	18,3	19,4	20,6	21,8	23,0

- 58. При изохорном нагревании идеального газа, количество вещества которого постоянно, температура газа увеличилась на $\Delta T = 160 \text{ K}$, а давление газа увеличилось в k=1,50 раза. Начальная температура T_1 газа была равна ... К.
- 59. При изотермическом расширении одного моля идеального одноатомного газа, сила давления газа совершила работу A_1 = 1,60 кДж. При последующем изобарном нагревании газу сообщили в два раза большее количество теплоты, чем при изотермическом расширении. Если начальная температура газа T_1 = 326 K, то его конечная температура T_2 равна ... \mathbf{K} .
- 60. На рисунке представлен график перехода идеального газа, количество вещества которого постоянно, из состояния 1 в состояние 6 в координатах (р, Т). К изопроцессам можно отнести следующие переходы:



- 1) $1 \to 2$ 2) $2 \to 3$ 3) $3 \to 4$
- 4) $4 \to 5$
- 5) $5 \rightarrow 6$
- 61. При изобарном расширении идеального газа, количество вещества которого постоянно, его объём увеличился от $V_1 = 100$ л до $V_2 = 120$ л. Если начальная абсолютная температура за $T_1 = 300$ K, то его конечная температура T_2 равна ... К.
- 62. На рисунке представлен график перехода идеального газа, количество вещества которого постоянно, из состояния 1 в состояние 6 в координатах (р, Т). К изопроцессам можно отнести следующие переходы:


- 1) $1 \rightarrow 2$ 2) $2 \rightarrow 3$ 3) $3 \rightarrow 4$ 4) $4 \rightarrow 5$
- 5) $5 \rightarrow 6$

- **63.** При изобарном расширении идеального газа, количество вещества которого постоянно, его объём увеличился от $V_1=100~{\rm дm}^3~{\rm дo}~V_2=150~{\rm дm}^3$. Если начальная абсолютная температура газа $T_1=300~{\rm K}$, то его конечная температура T_2 равна ... К.
- **64.** Изотермическому сжатию идеального газа, количество вещества которого постоянно, в координатах (p, V) соответствует график, показанный на рисунке, обозначенном буквой:

- **65.** При изотермическом сжатии идеального газа, количество вещества которого постоянно, его давление изменилось от $p_1=150$ кПа до $p_2=180$ кПа. Если конечный объём газа $V_2=50$ л, в его начальный объём V_1 был равен ... л
- **66.** В баллон вместимостью $V=400~{\rm cm}^3$ при постоянной температуре закачивают воздух насосом, вместимость камеры которого $V_0=35,0~{\rm cm}^3$. Начальное давление в баллоне было равно атмосферному давлению $p_0=100~{\rm k}\Pi a$. Когда совершили $n=32~{\rm kayahus}$, давление p в баллоне стала. равным ... к Πa .
- **67.** В некотором процессе идеальному газу, количество вещества которого постоянно, сообщили количество теплоты Q>0. Если при этом изменение внутренней энергий газа $\Delta U=Q$, то данный процесс является:
 - 1) изотермическим сжатием;
- 2) изобарным расширением;
- 3) изохорным нагреванием;
- 4) изобарным сжатием;
- 5) изохорным охлаждением.

68. Изохорному нагреванию идеального газа, количество вещества которого постоянно, в координатах p, V соответствует график, показанный на рисунке, обозначенном буквой:

- **69.** Идеальный газ, количество вещества которого постоянно, находился в сосуде при абсолютной температуре T_1 =300 К. Если при изохорном нагревании давление газа увеличилось в k=1,20 раза то конечная температура T_2 газа стала равной ... К.
- **70.** В баллон при постоянной температуре закачивают воздух насосом, вместимость камеры которого $V_0=28,0~{\rm cm}^3$. Начальное давление в баллоне было равно атмосферному давлению $p_0=100~{\rm k\Pi a}$. Если после совершения $n=30~{\rm ka}$ чаний давление в баллоне стало $p=300~{\rm k\Pi a}$, то вместимость V баллона равна ... ${\rm cm}^3$.